%!PS-Adobe-3.0
%%Title: (3266flowarea)
%%Creator: (Microsoft Word: LaserWriter 8 8.2)
%%CreationDate: (9:32 AM Friday, May 19, 1995)
%%For: (Howard Zebker)
%%Pages: 11
%%DocumentFonts: Times-Roman Symbol
%%DocumentNeededFonts: Times-Roman Symbol
%%DocumentSuppliedFonts:
%%DocumentData: Clean7Bit
%%PageOrder: Ascend
%%Orientation: Portrait
%%DocumentMedia: Default 612 792 0 () ()
%ADO_ImageableArea: 30 31 582 761
%%EndComments
userdict begin/dscInfo 5 dict dup begin
/Title(3266flowarea)def
/Creator(Microsoft Word: LaserWriter 8 8.2)def
/CreationDate(9:32 AM Friday, May 19, 1995)def
/For(Howard Zebker)def
/Pages 1 def
end def end
/md 131 dict def md begin/currentpacking where {pop /sc_oldpacking currentpacking def true setpacking}if
%%BeginFile: adobe_psp_basic
%%Copyright: Copyright 1990-1993 Adobe Systems Incorporated. All Rights Reserved.
/bd{bind def}bind def
/xdf{exch def}bd
/xs{exch store}bd
/ld{load def}bd
/Z{0 def}bd
/T/true
/F/false
/:L/lineto
/lw/setlinewidth
/:M/moveto
/rl/rlineto
/rm/rmoveto
/:C/curveto
/:T/translate
/:K/closepath
/:mf/makefont
/gS/gsave
/gR/grestore
/np/newpath
14{ld}repeat
/$m matrix def
/av 81 def
/por true def
/normland false def
/psb-nosave{}bd
/pse-nosave{}bd
/us Z
/psb{/us save store}bd
/pse{us restore}bd
/level2
/languagelevel where
{
pop languagelevel 2 ge
}{
false
}ifelse
def
/featurecleanup
{
stopped
cleartomark
countdictstack exch sub dup 0 gt
{
{end}repeat
}{
pop
}ifelse
}bd
/noload Z
/startnoload
{
{/noload save store}if
}bd
/endnoload
{
{noload restore}if
}bd
level2 startnoload
/setjob
{
statusdict/jobname 3 -1 roll put
}bd
/setcopies
{
userdict/#copies 3 -1 roll put
}bd
level2 endnoload level2 not startnoload
/setjob
{
1 dict begin/JobName xdf currentdict end setuserparams
}bd
/setcopies
{
1 dict begin/NumCopies xdf currentdict end setpagedevice
}bd
level2 not endnoload
/pm Z
/mT Z
/sD Z
/realshowpage Z
/initializepage
{
/pm save store mT concat
}bd
/endp
{
pm restore showpage
}def
/$c/DeviceRGB def
/rectclip where
{
pop/rC/rectclip ld
}{
/rC
{
np 4 2 roll
:M
1 index 0 rl
0 exch rl
neg 0 rl
:K
clip np
}bd
}ifelse
/rectfill where
{
pop/rF/rectfill ld
}{
/rF
{
gS
np
4 2 roll
:M
1 index 0 rl
0 exch rl
neg 0 rl
fill
gR
}bd
}ifelse
/rectstroke where
{
pop/rS/rectstroke ld
}{
/rS
{
gS
np
4 2 roll
:M
1 index 0 rl
0 exch rl
neg 0 rl
:K
stroke
gR
}bd
}ifelse
%%EndFile
%%BeginFile: adobe_psp_colorspace_level1
%%Copyright: Copyright 1991-1993 Adobe Systems Incorporated. All Rights Reserved.
/G/setgray ld
/:F/setrgbcolor ld
%%EndFile
%%BeginFile: adobe_psp_customps
%%Copyright: Copyright 1990-1993 Adobe Systems Incorporated. All Rights Reserved.
/$t Z
/$p Z
/$s Z
/$o 1. def
/2state? false def
/ps Z
level2 startnoload
/pushcolor/currentrgbcolor ld
/popcolor/setrgbcolor ld
/setcmykcolor where
{
pop/currentcmykcolor where
{
pop/pushcolor/currentcmykcolor ld
/popcolor/setcmykcolor ld
}if
}if
level2 endnoload level2 not startnoload
/pushcolor
{
currentcolorspace $c eq
{
currentcolor currentcolorspace true
}{
currentcmykcolor false
}ifelse
}bd
/popcolor
{
{
setcolorspace setcolor
}{
setcmykcolor
}ifelse
}bd
level2 not endnoload
/pushstatic
{
ps
2state?
$o
$t
$p
$s
}bd
/popstatic
{
/$s xs
/$p xs
/$t xs
/$o xs
/2state? xs
/ps xs
}bd
/pushgstate
{
save errordict/nocurrentpoint{pop 0 0}put
currentpoint
3 -1 roll restore
pushcolor
currentlinewidth
currentlinecap
currentlinejoin
currentdash exch aload length
np clippath pathbbox
$m currentmatrix aload pop
}bd
/popgstate
{
$m astore setmatrix
2 index sub exch
3 index sub exch
rC
array astore exch setdash
setlinejoin
setlinecap
lw
popcolor
np :M
}bd
/bu
{
pushgstate
gR
pushgstate
2state?
{
gR
pushgstate
}if
pushstatic
pm restore
mT concat
}bd
/bn
{
/pm save store
popstatic
popgstate
gS
popgstate
2state?
{
gS
popgstate
}if
}bd
/cpat{pop 64 div G 8{pop}repeat}bd
%%EndFile
%%BeginFile: adobe_psp_basic_text
%%Copyright: Copyright 1990-1993 Adobe Systems Incorporated. All Rights Reserved.
/S/show ld
/A{
0.0 exch ashow
}bd
/R{
0.0 exch 32 exch widthshow
}bd
/W{
0.0 3 1 roll widthshow
}bd
/J{
0.0 32 4 2 roll 0.0 exch awidthshow
}bd
/V{
0.0 4 1 roll 0.0 exch awidthshow
}bd
/fcflg true def
/fc{
fcflg{
vmstatus exch sub 50000 lt{
(%%[ Warning: Running out of memory ]%%\r)print flush/fcflg false store
}if pop
}if
}bd
/$f[1 0 0 -1 0 0]def
/:ff{$f :mf}bd
/MacEncoding StandardEncoding 256 array copy def
MacEncoding 39/quotesingle put
MacEncoding 96/grave put
/Adieresis/Aring/Ccedilla/Eacute/Ntilde/Odieresis/Udieresis/aacute
/agrave/acircumflex/adieresis/atilde/aring/ccedilla/eacute/egrave
/ecircumflex/edieresis/iacute/igrave/icircumflex/idieresis/ntilde/oacute
/ograve/ocircumflex/odieresis/otilde/uacute/ugrave/ucircumflex/udieresis
/dagger/degree/cent/sterling/section/bullet/paragraph/germandbls
/registered/copyright/trademark/acute/dieresis/notequal/AE/Oslash
/infinity/plusminus/lessequal/greaterequal/yen/mu/partialdiff/summation
/product/pi/integral/ordfeminine/ordmasculine/Omega/ae/oslash
/questiondown/exclamdown/logicalnot/radical/florin/approxequal/Delta/guillemotleft
/guillemotright/ellipsis/space/Agrave/Atilde/Otilde/OE/oe
/endash/emdash/quotedblleft/quotedblright/quoteleft/quoteright/divide/lozenge
/ydieresis/Ydieresis/fraction/currency/guilsinglleft/guilsinglright/fi/fl
/daggerdbl/periodcentered/quotesinglbase/quotedblbase/perthousand
/Acircumflex/Ecircumflex/Aacute/Edieresis/Egrave/Iacute/Icircumflex/Idieresis/Igrave
/Oacute/Ocircumflex/apple/Ograve/Uacute/Ucircumflex/Ugrave/dotlessi/circumflex/tilde
/macron/breve/dotaccent/ring/cedilla/hungarumlaut/ogonek/caron
MacEncoding 128 128 getinterval astore pop
level2 startnoload
/copyfontdict
{
findfont dup length dict
begin
{
1 index/FID ne{def}{pop pop}ifelse
}forall
}bd
level2 endnoload level2 not startnoload
/copyfontdict
{
findfont dup length dict
copy
begin
}bd
level2 not endnoload
md/fontname known not{
/fontname/customfont def
}if
/Encoding Z
/:mre
{
copyfontdict
/Encoding MacEncoding def
fontname currentdict
end
definefont :ff def
}bd
/:bsr
{
copyfontdict
/Encoding Encoding 256 array copy def
Encoding dup
}bd
/pd{put dup}bd
/:esr
{
pop pop
fontname currentdict
end
definefont :ff def
}bd
/scf
{
scalefont def
}bd
/scf-non
{
$m scale :mf setfont
}bd
/ps Z
/fz{/ps xs}bd
/sf/setfont ld
/cF/currentfont ld
/mbf
{
/makeblendedfont where
{
pop
makeblendedfont
/ABlend exch definefont
}{
pop
}ifelse
def
}def
%%EndFile
/currentpacking where {pop sc_oldpacking setpacking}if end
%%EndProlog
%%BeginSetup
md begin
countdictstack[{
%%BeginFeature: *ManualFeed False
level2 {1 dict dup /ManualFeed false put setpagedevice}{statusdict begin /manualfeed false store end} ifelse
%%EndFeature
}featurecleanup
countdictstack[{
%%BeginFeature: *InputSlot Upper
%%EndFeature
}featurecleanup
countdictstack[{
%%BeginFeature: *PageRegion LetterSmall
level2 {
2 dict dup /PageSize [612 792] put dup /ImagingBBox [30 31 582 761] put setpagedevice
}{
/lettersmall where {pop lettersmall} {letterR} ifelse
} ifelse
%%EndFeature
}featurecleanup
(Howard Zebker)setjob
/mT[1 0 0 -1 30 761]def
/sD 16 dict def
300 level2{1 dict dup/WaitTimeout 4 -1 roll put setuserparams}{statusdict/waittimeout 3 -1 roll put}ifelse
%%IncludeFont: Times-Roman
%%IncludeFont: Symbol
/f0_1/Times-Roman
:mre
/f0_24 f0_1 24 scf
/f0_18 f0_1 18 scf
/f0_12 f0_1 12 scf
/f1_1/Symbol
:bsr
240/apple pd
:esr
/f1_12 f1_1 12 scf
/Courier findfont[10 0 0 -10 0 0]:mf setfont
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
initializepage
(Howard Zebker; page: 1 of 11)setjob
%%EndPageSetup
gS 0 0 552 730 rC
280 55 :M
f0_18 sf
.295 .029(EOS IDS Volcanology Team)J
317 73 :M
.266 .027(Data Product Document)J
381 91 :M
.307 .031(Product # 3266)J
255 203 :M
f0_24 sf
.354 .035(Lava Flow Area Change)J
325 367 :M
f0_18 sf
.589 .059(Version 0.2 First Draft)J
389 385 :M
.81 .081(May 22, 1995)J
219 493 :M
.258 .026(Howard Zebker)J
182 511 :M
.24 .024(Jet Propulsion Laboratory)J
176 529 :M
.209(zebker@jakey.jpl.nasa.gov)A
endp
%%Page: 2 2
%%BeginPageSetup
initializepage
(Howard Zebker; page: 2 of 11)setjob
%%EndPageSetup
-30 -31 :T
gS 30 31 552 730 rC
246 81 :M
f0_12 sf
-.165(TABLE OF CONTENTS)A
90 117 :M
-.096(PREFACE )A
198 117 :M
(1)S
90 141 :M
-.04(1. INTRODUCTION )A
480 141 :M
(1)S
126 153 :M
-.107(1.1 Algorithm and Product Identification)A
126 165 :M
-.082(1.2 Algorithm Review)A
126 177 :M
-.073(1.3 Document Scope)A
126 189 :M
-.121(1.4 Applicable Documents and Publications)A
90 213 :M
-.143(2. OVERVIEW AND BACKGROUND INFORMATION )A
480 213 :M
(2)S
126 225 :M
-.165(2.1 Experimental Objective)A
126 237 :M
-.062(2.2 Historical Perspective)A
126 249 :M
-.076(2.3 Instrument Characteristics)A
90 273 :M
-.078(3. ALGORITHM DESCRIPTION )A
480 273 :M
(3)S
126 285 :M
-.134(3.1 Theoretical Description)A
162 297 :M
.131 .013(3.1.1 Physics of the Problem)J
162 309 :M
-.13(3.1.2 Mathematical Aspects of the Algorithm)A
162 321 :M
-.115(3.1.3 Variance / Uncertainty Estimate)A
126 333 :M
-.07(3.2 Practical Considerations)A
162 345 :M
-.055(3.2.1 Numerical Computation Considerations)A
162 357 :M
-.028(3.2.2 Programming / Procedural Considerations)A
198 369 :M
.248 .025(3.2.2.a Radar Processing Step)J
198 381 :M
-.006(3.2.2.b Data Product Production at JPL/Hawaii SCF)A
162 393 :M
-.094(3.2.3 Calibration Validation)A
162 405 :M
-.071(3.2.4 Quality Control and Diagnostics)A
162 417 :M
-.013(3.2.5 Exception Handling)A
162 429 :M
-.084(3.2.6 Data Dependencies)A
162 441 :M
.133 .013(3.2.7 Output Products)J
198 453 :M
-.009(3.2.7.a Correlation Image Files)A
198 465 :M
-.099(3.2.7.b Approximate Daily Areal Time Series)A
198 477 :M
(3.2.7.c Descriptive Files)S
90 501 :M
-.007(4. CONSTRAINTS, LIMITATIONS, ASSUMPTIONS )A
480 501 :M
(8)S
90 525 :M
.151 .015(5. REFERENCES )J
480 525 :M
(9)S
90 549 :M
.591 .059(FIGURES )J
474 549 :M
(10)S
126 561 :M
-.063(Figure 1. Lava flow times series over Kilauea from SRL-2)A
endp
%%Page: 3 3
%%BeginPageSetup
initializepage
(Howard Zebker; page: 3 of 11)setjob
%%EndPageSetup
-30 -31 :T
gS 30 31 552 730 rC
90 81 :M
f0_12 sf
-.16(Preface)A
90 105 :M
-.091(This document version 0.1 describes plans for an algorithm to monitor and document area)A
90 117 :M
-.106(changes in active lava flows from interferometric synthetic aperture radar data. Version 0.2)A
90 129 :M
-.078(is an evolutionary draft, and much of this information is subject to change.)A
90 153 :M
-.022(1. Introduction)A
90 177 :M
-.107(1.1 Algorithm and Product Identification)A
90 201 :M
-.068(The EOS product number is 3266, and the label is "Lava flow area change." It consists of)A
90 213 :M
-.132(an algorithm to determine the surface area of active lava flows, and three closely-related)A
90 225 :M
-.113(products created from the results of that algorithm: lava flow map data files, a tabular of)A
90 237 :M
-.074(change in surface area from previous observations, and a descriptive file. This product)A
90 249 :M
-.122(belongs to the EOS IDS Interdisciplinary Science Volcanology Team, led by Peter)A
90 261 :M
-.075(Mouginis-Mark.)A
90 285 :M
-.087(1.2 Algorithm Review)A
90 309 :M
-.144(The active flow area algorithm consists of an interferometric radar correlation image)A
90 321 :M
-.164(detection scheme that identifies what regions in the imaged area decorrelate completely)A
90 333 :M
-.089(between successive observations, and what the area of the decorrelated region is as a)A
90 345 :M
-.107(function of time. This algorithm will be applied to data acquired over volcanoes whose)A
90 357 :M
-.085(activity has been flagged by other algorithms or are known from ground observations to be)A
90 369 :M
-.141(active. Once a volcano has been identified as active by thermal or SO2 detection algorithms)A
90 381 :M
-.113(from MODIS or by other means, one of the suite of international synthetic aperture radar)A
90 393 :M
-.131(\(SAR\) satellites will target the site, and the data delivered to the IDS team. The time lag for)A
90 405 :M
-.134(data collection could be several weeks depending on the latitude of the volcano and the)A
90 417 :M
-.117(satellite used. There will be a further lag in receipt of the data at the processing site which)A
90 429 :M
-.088(could be several days. The data would then be processed in concert with the previous data)A
90 441 :M
-.11(collected over the site and correlation maps generated. From here an operator would)A
90 453 :M
-.104(identify the flows as distinct from other areas of possible decorrelation, and initiate a)A
90 465 :M
-.092(calculation of flow area. The results from this are stored in tabular form by location. The)A
90 477 :M
-.163(resulting correlation maps and time history data are then sent to the EDC DAAC EROS Data)A
90 489 :M
-.128(Center Distributed Active Archive Center. One set of output products will be generated for)A
90 501 :M
-.086(each of approximately 0-10 eruptions per year.)A
90 525 :M
-.106(The above assumes that for each instance of an active volcano alert, we have previously)A
90 537 :M
-.113(stored a "before" radar image. The IDS team intends to archive a catalog of "interesting")A
90 549 :M
-.065(volcanos and potential eruptive sites which will serve this purpose. For new and)A
90 561 :M
-.119(unexpected eruptions, the time series acquisition will begin with the activity alert. There)A
90 573 :M
-.124(will an additional delay in generating lava flow data products as the time history is built up)A
90 585 :M
-.076(from successive observations-- this delay could be days to weeks depending on the radar)A
90 597 :M
.645 .064(sensor used.)J
90 621 :M
-.149(While the code to generate the products may be made available to the general community,)A
90 633 :M
-.132(the computational resources and operator understanding of its optimal application will likely)A
90 645 :M
-.102(preclude voluminous useful product generation at sites other than the planned processing)A
90 657 :M
(centers.)S
90 681 :M
-.077(1.3 Document Scope)A
90 705 :M
-.114(This document describes the physical basis for the algorithm, implementation)A
90 717 :M
-.015(plan, required input, and output products.)A
endp
%%Page: 4 4
%%BeginPageSetup
initializepage
(Howard Zebker; page: 4 of 11)setjob
%%EndPageSetup
-30 -31 :T
gS 30 31 552 730 rC
90 93 :M
f0_12 sf
-.124(1.4 Applicable Documents and Publications)A
90 117 :M
-.19(Other applicable documents:)A
90 129 :M
-.05(Crisp, J. 1995, manuscript in prep., "Detection of volcanic SO2 using the satellite)A
90 141 :M
-.09(infrared imaging radiometers HIRS2 and MODIS. ")A
90 153 :M
-.136(EOS IDS Volcanology Data Product Document for product 3290:)A
90 165 :M
-.036("Volcano Eruption Spike," by Luke Flynn.)A
endp
%%Page: 5 5
%%BeginPageSetup
initializepage
(Howard Zebker; page: 5 of 11)setjob
%%EndPageSetup
-30 -31 :T
gS 30 31 552 730 rC
90 81 :M
f0_12 sf
-.07(2. Overview and Background Information)A
90 105 :M
-.171(2.1 Experimental Objective)A
90 129 :M
-.122(The purpose of this algorithm is to allow the EOS IDS Volcanology Team and)A
90 141 :M
-.13(other volcanologists to monitor the extent and areal rate increase of active lava flows from)A
90 153 :M
-.08(eruptions which may be either too dangerous or too remote for field survey techniques.)A
90 165 :M
-.102(This may result in scheduling of more detailed field observations or a hazard assessment)A
90 177 :M
-.111(from a central analysis site, with the data capable of being downlinked to on-site emergency)A
90 189 :M
-.086(or scientific crews. The results of the algorithm will also be useful for retrospective studies)A
90 201 :M
-.083(of lava flow volumes and other geophysical parameters needed for volcano study.)A
90 225 :M
-.065(2.2 Historical Perspective)A
90 249 :M
-.114(Remote sensing of volcanic eruptions is attractive for several reasons: i\) it may be)A
90 261 :M
-.127(dangerous for field personnel to collect in situ flow area data, ii\) data are immediately)A
90 273 :M
-.131(available in digital form so they may be readily incorporated in analyses of the eruption)A
90 285 :M
-.131(event, and iii\) data may be acquired in remote areas that may be expensive to reach by)A
90 297 :M
-.104(conventional means. In this latter case a large number of sites may be studied and)A
90 309 :M
-.105(responses coordinated from a central location, reducing demands on the local infrastructure)A
90 321 :M
-.103(in times of pending hazard. Radar remote sensing has the particular advantage of)A
90 333 :M
-.097(insensitivity to solar illumination \(it works as well at night as during the day\) and also is)A
90 345 :M
-.066(less sensitive to atmospheric conditions than optical sensors. Thus, cloud cover or thick)A
90 357 :M
-.1(eruption plumes do not obscure the targets. Preliminary correlation analyses of volcanic)A
90 369 :M
-.117(data have been implemented using the NASA SIR-C space shuttle radar and also with the)A
90 381 :M
-.12(European ERS-1 satellite, and indicate the viability of the technique. Several other free-)A
90 393 :M
-.115(flying radar satellites are planned for the EOS time period, including ERS-2 and the)A
90 405 :M
-.076(ENVISAT SAR from Europe, the Canadian Radarsat 1 and 2 satellites, and JERS-1 and 2)A
90 417 :M
-.118(from Japan. All of these can be expected to generate useful correlation data for these)A
90 429 :M
.168(purposes.)A
90 453 :M
-.078(2.3 Instrument Characteristics)A
90 477 :M
-.129(Several satellite radar systems are either currently in orbit or will be operational during the)A
90 489 :M
-.076(EOS time frame beginning in 1998. They operate at various wavelengths, as shown in the)A
90 501 :M
-.093(table below. In addition, it is likely that NASA will launch a 24-cm system \(which we)A
90 513 :M
-.135(denote TOPSAT for its likely topographic focus\) in the same time period that is optimized)A
90 525 :M
-.127(for interferometric radar data acquisition. As the satellites are in near-polar orbits global)A
90 537 :M
-.118(coverage is available, thus most volcanic events will be observable. Detailed information)A
90 549 :M
-.118(on the parameters listed an their importance may be found in the references.)A
165 573 :M
-.138(Interferometric radar satellite systems - Nominal parameters)A
90 597 :M
-.066(System)A
205 597 :M
-.296( RADARSAT )A
343 597 :M
( ERS-x )S
473 597 :M
.209 .021( JERS-x)J
90 621 :M
-.08(Frequency)A
228 621 :M
.842 .084(5.3 GHz)J
336 621 :M
.842 .084(5.3 GHz)J
459 621 :M
.748 .075(1.275 GHz)J
90 633 :M
-.094(Range bandwidth)A
215 633 :M
-.081(11-30 MHz)A
323 633 :M
.191 .019(15.55 MHz)J
474 633 :M
-.131(15 MHz)A
90 645 :M
-.09(Peak transmit power)A
232 645 :M
-.065(4000 W)A
340 645 :M
-.065(4800 W)A
447 645 :M
-.032(1100-1500 W)A
90 657 :M
-.148(Pulse repetition rate)A
205 657 :M
-.121(1600 nominal)A
313 657 :M
-.121(1679 nominal)A
461 657 :M
(1505-1606)S
90 669 :M
-.136(Antenna dimensions)A
212 669 :M
.166 .017(15 by 1.6 m)J
327 669 :M
-.037( 11 by 1 m)A
455 669 :M
.166 .017(12 by 2.2 m)J
90 681 :M
-.183(Antenna elevation beam width)A
251 681 :M
-.266(6.2)A
cF
f1_12 sf
-.266A
sf
369 681 :M
-1.799(6)A
cF
f1_12 sf
-1.799A
sf
494 681 :M
-.266(6.2)A
cF
f1_12 sf
-.266A
sf
90 693 :M
-.187(Critical baseline length)A
234 693 :M
-.067(1100 m)A
342 693 :M
-.067(1100 m)A
477 693 :M
-.067(4500 m)A
90 705 :M
-.081(Altitude decay, appr.)A
226 705 :M
-.142(10 m/day)A
334 705 :M
-.142(10 m/day)A
469 705 :M
-.142(10 m/day)A
90 717 :M
-.253(Satellite altitude)A
234 717 :M
-.067(800 km)A
342 717 :M
-.067(790 km)A
477 717 :M
-.067(568 km)A
endp
%%Page: 6 6
%%BeginPageSetup
initializepage
(Howard Zebker; page: 6 of 11)setjob
%%EndPageSetup
-30 -31 :T
gS 30 31 552 730 rC
90 81 :M
f0_12 sf
-.098(Look angles)A
239 81 :M
-.358(20-50)A
cF
f1_12 sf
-.358A
sf
347 81 :M
-.358(21-26)A
cF
f1_12 sf
-.358A
sf
498 81 :M
-.899(35)A
cF
f1_12 sf
-.899A
sf
90 93 :M
-.017(Ground range swath)A
234 93 :M
-.067(100 km)A
339 93 :M
-.056( 100 km)A
483 93 :M
-.084(85 km)A
90 117 :M
-.066(System)A
217 117 :M
-.188( ENVISAT)A
90 141 :M
-.08(Frequency)A
228 141 :M
.842 .084(5.3 GHz)J
90 153 :M
-.094(Range bandwidth)A
215 153 :M
-.081(11-30 MHz)A
90 165 :M
-.09(Peak transmit power)A
232 165 :M
-.065(4000 W)A
90 177 :M
-.148(Pulse repetition rate)A
205 177 :M
-.121(1600 nominal)A
90 189 :M
-.136(Antenna dimensions)A
212 189 :M
.166 .017(15 by 1.6 m)J
90 201 :M
-.183(Antenna elevation beam width)A
251 201 :M
-.266(6.2)A
cF
f1_12 sf
-.266A
sf
90 213 :M
-.187(Critical baseline length)A
234 213 :M
-.067(1100 m)A
90 225 :M
-.081(Altitude decay, appr.)A
226 225 :M
-.142(10 m/day)A
90 237 :M
-.253(Satellite altitude)A
234 237 :M
-.067(800 km)A
90 249 :M
-.098(Look angles)A
239 249 :M
-.358(20-50)A
cF
f1_12 sf
-.358A
sf
90 261 :M
-.017(Ground range swath)A
234 261 :M
-.067(100 km)A
90 297 :M
-.129(The expected parameters for the NASA TOPSAT system are not yet determined, but a)A
90 309 :M
-.038(reasonable guess is given by Zebker et al. \(1994b\).)A
90 333 :M
-.129(3. Algorithm Description)A
90 357 :M
-.139(3.1 Theoretical Description)A
90 381 :M
.153 .015(3.1.1 Physics of the Problem)J
90 405 :M
-.105(The analysis technique is based on the coherence of radar echoes from surfaces that move)A
90 417 :M
-.104(on the pixel or subpixel scale between observation times \(Zebker and Villasenor, 1992;)A
90 429 :M
-.088(Goldstein and Zebker, 1987\). Since the backscatter from any resolution element is the)A
90 441 :M
-.111(coherent sum of echoes from all of the wavelength-scale scatterers within a resolution)A
90 453 :M
-.1(element meters in size, if the surface is viewed from two different angles or if the surface)A
90 465 :M
-.089(distribution of scatterers changes between observations, the correlation will decrease. The)A
90 477 :M
-.138(geometrical part of the correlation behavior is called baseline decorrelation, and sets limits)A
90 489 :M
-.111(on how close the satellite orbits must repeat to achieve coherence. The second effect, that)A
90 501 :M
-.051(of subpixel motion, is what concerns us here. During an eruption, a surface may be)A
90 513 :M
-.089("written over" with an entirely new set of scatterers when a new lava flow inundates older)A
90 525 :M
-.085(terrain. This immediately destroys the echo coherence with previous observations. Since)A
90 537 :M
-.134(radar image intensity is dependent on the statistics of the scatterers rather than their exact)A
90 549 :M
-.082(locations, the new surface is usually indistinguishable from an older surface in terms of its)A
90 561 :M
-.122(visual and statistical appearance except in certain situations. Thus monitoring of the)A
90 573 :M
-.101(coherence repeatedly yields areas which have changed since the previous observations. A)A
90 585 :M
-.045(time series of measurements yields the flow's growth pattern.)A
90 609 :M
-.133(3.1.2 Mathematical Aspects of the Algorithm)A
90 633 :M
-.09(The complete algorithm follows from several data processing steps, many of which are)A
90 645 :M
-.089(well documented in the literature \(see Curlander 1991 for a review of SAR processing, and)A
90 657 :M
-.043(Zebker et al. 1994a,b for interferometric processing steps.\) In summary, radar data pass)A
90 669 :M
-.1(pairs are processed together to complex \(amplitude and phase\) images, the phase)A
90 681 :M
-.097(differences are generated, forming the interferogram. From the interferogram and)A
90 693 :M
-.123(individual channel intensity data, the correlation coefficient is formed using the following)A
90 705 :M
-.207(equation:)A
endp
%%Page: 7 7
%%BeginPageSetup
initializepage
(Howard Zebker; page: 7 of 11)setjob
%%EndPageSetup
-30 -31 :T
gS 30 31 552 730 rC
162 73 99 41 rC
261 114 :M
psb
currentpoint
pse
162 73 :M
psb
/MTsave save def 40 dict begin
currentpoint 3 -1 roll sub neg 3 1 roll sub
3168 div 1312 3 -1 roll exch div scale
currentpoint translate 64 52 translate
/thick 0 def
/th { dup setlinewidth /thick exch def } def
/sqr {
3 index div /thick exch def
gsave
translate
dup dup neg scale
dup 4 -1 roll exch div 3 1 roll div
0 setlinewidth
newpath
0 0 moveto
dup .34 mul 0 exch lineto
.375 .214 rlineto
dup thick add dup .375 exch lineto
2 index exch lineto
dup thick 2 div sub dup 3 index exch lineto
.6 exch lineto
.375 0 lineto
clip
thick setlinewidth
newpath
dup .34 mul 0 exch moveto
.15 .085 rlineto
.375 0 lineto
thick 2 div sub dup .6 exch lineto
lineto
stroke
grestore
} def
2410 625 384 607 1218 16 sqr
16 th 575 553 moveto 2474 0 rlineto stroke
/cat {
dup length 2 index length add string
dup dup 5 -1 roll exch copy length
4 -1 roll putinterval
} def
/ff {
dup FontDirectory exch known not {
dup dup length string cvs (|______) exch cat
dup FontDirectory exch known {exch} if pop
} if
findfont
} def
/fs 0 def /cf 0 def
/sf {exch dup /fs exch def dup neg matrix scale makefont setfont} def
/f1 {ff dup /cf exch def sf} def
/ns {cf sf} def
/sh {moveto show} def
384 /Times-Roman f1
(c) -9 652 sh
(E) 1295 355 sh
(E) 863 1028 sh
(E) 1919 1028 sh
384 /Symbol f1
(=) 257 652 sh
/f3 {ff 3 -1 roll .001 mul 3 -1 roll .001 mul matrix scale
makefont dup /cf exch def sf} def
384 1000 1552 /Symbol f3
(\() 1534 400 sh
(\)) 2219 400 sh
(\() 1102 1073 sh
(\)) 1787 1073 sh
(\() 2158 1073 sh
(\)) 2879 1073 sh
384 /Times-Italic f1
(s) 1673 355 sh
(s) 1913 355 sh
(s) 1241 1028 sh
(s) 1481 1028 sh
(s) 2297 1028 sh
(s) 2573 1028 sh
224 /Times-Roman f1
(1) 1799 451 sh
(2) 2057 451 sh
(1) 1367 1124 sh
(1) 1607 1124 sh
(2) 2441 1124 sh
(2) 2717 1124 sh
224 /Times-Roman f1
(*) 2071 183 sh
(*) 1639 856 sh
(*) 2731 856 sh
end MTsave restore
pse
gR
gS 30 31 552 730 rC
90 135 :M
f0_12 sf
-.111(where c is the correlation, E\(\) denotes expectation determined by spatial averaging, and the)A
90 147 :M
-.102(s values represent complex single look radar measurements. These values are determined)A
90 159 :M
-.11(for the entire radar scene and an operator evaluates the area of individual flows as areas of)A
90 171 :M
-.097(low correlation. Time series histories for each flow are then generated from a sequence of)A
90 183 :M
-.052(radar images.)A
90 207 :M
-.118(3.1.3 Variance / Uncertainty Estimate)A
90 231 :M
-.099(The variance of the observed correlation measurements depends on many parameters, such)A
90 243 :M
-.052(as radar signal-to-noise ratio, surface roughness, and required resolution of the)A
90 255 :M
-.089(measurements. Current research is focused at quantifying these effects and the results will)A
90 267 :M
-.118(be applied to the analysis algorithms as available.)A
90 291 :M
-.072(3.2 Practical Considerations)A
90 315 :M
-.059(As discussed in section 1.2 above, we assume that there exists an archive of "before")A
90 327 :M
-.083(images for contrast with radar images of active volcanos. Since each sensor is)A
90 339 :M
-.077(characterized by its own look angle, wavelength, and orbit, base images from each)A
90 351 :M
-.077(potential sensor must be stored. Thus, on-line disk storage limitations will constrain the)A
90 363 :M
-.124(number of volcanos that may be catalogued at any time.)A
90 387 :M
-.134(It is difficult to predict the contrast in the correlation images in advance as non-eruptive)A
90 399 :M
-.114(factors influence radar correlation values. For example, vegetated areas will not correlate)A
90 411 :M
-.073(well after long periods of time, particularly at the shorter \(<10 cm\) wavelengths. Thus, it)A
90 423 :M
-.115(is necessary to have a human operator in the analysis cycle at present to identify lava flow)A
90 435 :M
-.122(decorrelation from knowledge of geologic context. Due the the infrequency of active)A
90 447 :M
-.022(eruptions, however, that should not pose a major burden on the process.)A
90 471 :M
-.112(Another possibility is to utilize vegetation maps from other EOS sensors such as MODIS to)A
90 483 :M
-.087(eliminate volcanos for which the likelihood of the algorithm's success is limited. This will)A
90 495 :M
-.098(be investigated and if such masking is useful, it will be applied to reduce the required set of)A
90 507 :M
-.128(online radar image data.)A
90 531 :M
-.122(The algorithm is expected to be operational at the start of the EOS mission, in)A
90 543 :M
.25(1998.)A
90 567 :M
-.056(3.2.1 Numerical Computation Considerations)A
90 591 :M
-.077(The radar data processing code will be written in Fortran, however, since it is quite)A
90 603 :M
-.1(computationally intensive, high-speed fast Fourier transform libraries are reqired and)A
90 615 :M
-.132(probably platform dependent. Our intention is to implement the code on dedicated)A
90 627 :M
-.054(workstations, the prototype of which is a Hewlett Packard 755 workstation with Convex)A
90 639 :M
-.119(math libraries. The flow isolation and area calculation routines which operate on the)A
90 651 :M
-.093(correlation images will also likely be written in Fortran, with windows interaction software)A
90 663 :M
-.12(in C. These will allow operators to interactively select individual flows and determine their)A
90 675 :M
-.131(area and spatial location.)A
90 699 :M
-.029(3.2.2 Programming / Procedural Considerations)A
endp
%%Page: 8 8
%%BeginPageSetup
initializepage
(Howard Zebker; page: 8 of 11)setjob
%%EndPageSetup
-30 -31 :T
gS 30 31 552 730 rC
90 81 :M
f0_12 sf
.2 .02(3.2.2.a Radar processing step)J
90 93 :M
-.088(The radar data will be processed to complex images sharing the set of software used by two)A
90 105 :M
-.081(other EOS IDS algorithms, products 3269 "Volcano Topography" and 3272 "Volcano)A
90 117 :M
-.115(Deformation and Change". The interferograms generated from the data will be required by)A
90 129 :M
-.1(each of these algorithms although separate radar post-processing procedures are needed to)A
90 141 :M
-.089(generate the various output products. The radar interferograms will be produced within 2)A
90 153 :M
-.085(days after receipt of the data at the processing center, located either at JPL or U. Hawaii.)A
90 177 :M
-.025(3.2.2.b Data product generation at JPL or Hawaii SCF)A
90 189 :M
-.151(No guarantee will be made by the EOS IDS Volcanology Team to create the lava flow area)A
90 201 :M
-.117(products within a specified time interval, due to the necessary operator interaction and)A
90 213 :M
-.052(scheduling of radar observations. However, if the alarms or other means of quick)A
90 225 :M
-.123(identification occur, satellite radar acquisition systems targeted promptly and data acquired,)A
90 237 :M
-.065(the output products should be produced within several days of an event.)A
90 261 :M
-.126(There will also be required an algorithm to determine whether or not a given eruption merits)A
90 273 :M
-.066(lava flow analysis. Thsi will depend on various factors, including hazard potential,)A
90 285 :M
-.089(geologic significance, and operational considerations. This algorithm is TBD.)A
90 309 :M
-.096(3.2.3 Calibration and Validation)A
90 333 :M
-.08(Results for the algorithm will be compared to other sources of information, such as)A
90 345 :M
-.108(Smithsonian Global Volcanism Network reports, weather satellite images \(for thermal)A
90 357 :M
-.104(activity\) , ASTER observations \(for thermal activity and changes in surface area\), and field)A
90 369 :M
-.061(survey maps, to confirm that the algorithm is working properly. The results of these)A
90 381 :M
-.113(comparisons will be included in the data descriptive file .)A
90 405 :M
-.073(3.2.4 Quality Control and Diagnostics)A
90 429 :M
-.104(When and if the operator intervention is eliminated from the procedure, thresholds for)A
90 441 :M
-.125(decorrelation will be set and checked by human interpretation. Automated products will be)A
90 453 :M
-.127(then included in the output data files, and the change will be documented in the descriptive)A
90 465 :M
-.064(file 3.2.7.c. There will be no attempt to reprocess older data if an algorithm is updated.)A
90 489 :M
-.013(3.2.5 Exception Handling)A
90 513 :M
-.051(If data are missing, it will simply not show up in the output products. Such gaps will be)A
90 525 :M
-.08(noted in the descriptive file 3.2.7.c. The descriptive file will also note whether an eruption)A
90 537 :M
-.11(was missed due to a temporal gap in interferometric radar data.)A
90 561 :M
-.119(3.2.6 Data Dependencies Input Data)A
90 585 :M
-.102(The input data needed for the algorithm is raw radar signal samples from a series of radar)A
90 597 :M
-.087(passes over an active volcano. In addition, platform orbit location data are required.)A
90 621 :M
-.062(The sensor suite utilized for the radar data consists of ERS-1/2, JERS 1/2, RADARSAT,)A
90 633 :M
-.094(ENVISAT, and any NASA spaceborne system which will be in operation during the EOS)A
90 645 :M
-.142(time frame. Data from several DAACs will be required; the exact list is TBD and depends)A
90 657 :M
.21 .021(on the sensors used.)J
90 681 :M
-.098(Auxiliary algorithms, such as those designed to eliminate low priority or low probability of)A
90 693 :M
-.104(success sites, will require data from instruments such as MODIS to generate vegetation)A
90 705 :M
-.056(maps or other ground cover factors. The algorithms and sensors required are TBD.)A
endp
%%Page: 9 9
%%BeginPageSetup
initializepage
(Howard Zebker; page: 9 of 11)setjob
%%EndPageSetup
-30 -31 :T
gS 30 31 552 730 rC
90 81 :M
f0_12 sf
.17 .017(3.2.7 Output Products)J
90 105 :M
-.085(Three types of products will be generated, listed below as items a through c. All)A
90 117 :M
-.136(three will be archived in the EDC DAAC. No computer code will be run at the)A
90 129 :M
-.154(DAAC; the DAAC will only be required to archive the data products which will be)A
90 141 :M
-.076(sent from an EOS IDS SCF at JPL or Hawaii. The current plan is to use cylindrical)A
90 153 :M
-.088(equidistant projections for the maps, and to store the maps as raster files in EOS-)A
90 165 :M
(HDF format.)S
90 189 :M
-.02(3.2.7.a Correlation data files)A
90 213 :M
-.119(A binary file \(HDF format\) consisting of radar backscatter measurements and interferogram)A
90 225 :M
-.111(correlation values will contain the correlation image data, usually in less than two working)A
90 237 :M
-.138(days after the data is received at JPL/Hawaii from the satellite receiving station for that)A
90 249 :M
-.109(sensor. The radar backscatter values will be relative to TBD, and the correlation values will)A
90 261 :M
-.099(be floating point numbers ranging from 0 for no correlation to 1 for perfect correlation. At)A
90 273 :M
-.089(first, these files will be created manually, but if the algorithm is found to be working in a)A
90 285 :M
-.109(reasonable fashion, then later this process will be automated. Each correlation image will)A
90 297 :M
-.12(require 1 Mbyte of storage per interferometric pair, and pairs will be generated at several)A
90 309 :M
-.068(day to several week intervals, depending on the sensor, for the life of the eruptive event,)A
90 321 :M
-.084(unless discontinued by the EOS IDS Team.)A
90 345 :M
-.131(A header record included in the HDF format will contain additional information such as)A
90 357 :M
-.079(geocoded positional information, orbit geometry, and time tags.)A
90 381 :M
-.099(3.2.7.b Approximate Daily Areal Time Series)A
90 405 :M
-.124(The areal calculation for each flow will be tabulated and saved in text files where, for each)A
90 417 :M
-.102(interferometric pair, the areal and flow identification, in terms of position, are appended to)A
90 429 :M
-.057(the previous data.)A
90 453 :M
-.011(3.2.7.c Descriptive files)A
90 477 :M
-.106(An ASCII text file record length < 1000 characters will discuss the results of the algorithm)A
90 489 :M
-.098(and will document algorithm changes. The file will be updated and appended to, in as)A
90 501 :M
-.105(timely a fashion as possible. At the end of each calendar year, a new data file will be)A
90 513 :M
-.134(started. The file will include a description of the data file format and the algorithm)A
90 525 :M
-.1(versions. When possible, it will identify the original volcano name and location of the lava)A
90 537 :M
-.081(flows detected, and any reported characteristics of the flows. Large eruptions that were not)A
90 549 :M
-.094(imaged by the radar will also be noted. The file size will be less than 10Mb per year, and)A
90 561 :M
-.096(typically less than 1 Mb.)A
90 585 :M
-.126(The descriptive file will also contain a summary of the volcanos currently in the archive of)A
90 597 :M
-.095("before" images, identifying the potential eruptive sites which could be studied easily. It)A
90 609 :M
-.117(would also permit feedback from the science community about sites which have not been)A
90 621 :M
-.126(identified by the IDS team.)A
90 645 :M
-.169(Expected Total Storage Required at the EDC DAAC = 35 Mb per Year)A
90 669 :M
-.165( a Correlation Data Files)A
90 693 :M
-.116(25 Correlation images, 1 Mbyte each)A
90 717 :M
-.196( b Approximate Daily Areal Time Sreies)A
endp
%%Page: 10 10
%%BeginPageSetup
initializepage
(Howard Zebker; page: 10 of 11)setjob
%%EndPageSetup
-30 -31 :T
gS 30 31 552 730 rC
90 93 :M
f0_12 sf
-.072(5 time series, each less than 10Kbytes in size)A
90 117 :M
-.183( c Descriptive File)A
90 141 :M
-.128(Up to 10 Mbyte/year)A
90 165 :M
-.022( 4. Constraints, Limitations, and Assumptions)A
90 189 :M
-.132(The major constraint is in the uncertainty of the correlation from inactive flow areas on the)A
90 201 :M
-.119(volcanoes. Severe environmental conditions can cause decorrelation that could be)A
90 213 :M
-.089(misinterpreted as flow activity. For this reason we have left human operators in the analysis)A
90 225 :M
-.124(at present. If our continued accumulation of experience permits generation of automated)A
90 237 :M
-.092(approaches, these will be incorporated into the algorithms and the progress will be)A
90 249 :M
-.112(documented in the descriptive files.)A
90 273 :M
-.11(The variance of the correlation estimates depends greatly on the sensor resolutions and)A
90 285 :M
-.096(signal to noise performance. A detailed tradeoff of resolution vs. uncertainty remains to be)A
90 297 :M
-.121(done, and will require some experience with data to complete. We project that the)A
90 309 :M
-.091(approximate values will be known TBD.)A
90 333 :M
-.024(5. References)A
90 357 :M
-.065(Crisp, J. 1995, manuscript in prep. Detection of volcanic SO using the satellite)A
90 369 :M
-.096(infrared imaging radiometers HIRS2 and MODIS.)A
90 393 :M
-.024(Curlander J. and R.N. McDonough,"Synthetic Aperture Radar, Systems and Signal)A
90 405 :M
.406 .041(Processing", John Wiley & Sons, Inc., 1991.)J
90 429 :M
-.032(Goldstein, R.M., and H.A. Zebker, "Interferometric radar measurement of ocean surface)A
90 441 :M
.392 .039(currents", Nature, Vol. 328, No. 6132, pp. 707-709, 20 August 1987.)J
90 465 :M
-.049(Zebker, H.A., and J. Villasenor, Decorrelation in interferometric radar echoes,)A
90 477 :M
.282 .028( IEEE Trans. Geo. Rem. Sensing, Vol 30, no. 5, pp 950-959, September, 1992.)J
90 501 :M
.241 .024(Zebker, H.A., C.L. Werner, P. Rosen, and S. Hensley, Accuracy of topographic maps)J
90 513 :M
-.096(derived from ERS-1 radar interferometry, IEEE Transactions on Geoscience)A
90 525 :M
.277 .028(and Remote Sensing, Vol. 32, No. 4, pp 823-836, July 1994a.)J
90 549 :M
.349 .035(Zebker, H.A., P.A. Rosen, R.M. Goldstein, A. Gabriel, and C. Werner, On the)J
90 561 :M
-.138(derivation of coseismic displacement fields using differential radar interferometry:)A
90 573 :M
-.045(the Landers earthquake, Journal of Geophysical Research - Solid Earth, Vol. 99,)A
90 585 :M
.362 .036(No. B10, pp 19617-19634, October 10, 1994b.)J
90 609 :M
.465 .046(Zebker, H.A., T.G.Farr, R.P. Salazar, and T.H. Dixon, Mapping the world's topography)J
90 621 :M
-.037(using radar interferometry: the TOPSAT mission, IEEE Proceedings, Vol. 82, No.)A
90 633 :M
.054 .005(12, pp 1774-1786, December 1994c.)J
90 657 :M
-.027(ERS-1 system description,)A
90 681 :M
-.014(JERS system description,)A
90 705 :M
-.122(RADARSAT system description,)A
endp
%%Page: 11 11
%%BeginPageSetup
initializepage
(Howard Zebker; page: 11 of 11)setjob
%%EndPageSetup
-30 -31 :T
gS 30 31 552 730 rC
endp
%%Trailer
end
%%EOF